Genome-wide characterization of the Zap1p zinc-responsive regulon in yeast.

نویسندگان

  • T J Lyons
  • A P Gasch
  • L A Gaither
  • D Botstein
  • P O Brown
  • D J Eide
چکیده

The Zap1p transcription factor senses cellular zinc status and increases expression of its target genes in response to zinc deficiency. Previously known Zap1p-regulated genes encode the Zrt1p, Zrt2p, and Zrt3p zinc transporter genes and Zap1p itself. To allow the characterization of additional genes in yeast important for zinc homeostasis, a systematic study of gene expression on the genome-wide scale was used to identify other Zap1p target genes. Using a combination of DNA microarrays and a computer-assisted analysis of shared motifs in the promoters of similarly regulated genes, we identified 46 genes that are potentially regulated by Zap1p. Zap1p-regulated expression of seven of these newly identified target genes was confirmed independently by using lacZ reporter fusions, suggesting that many of the remaining candidate genes are also Zap1p targets. Our studies demonstrate the efficacy of this combined approach to define the regulon of a specific eukaryotic transcription factor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiological and transcriptional responses of Saccharomyces cerevisiae to zinc limitation in chemostat cultures.

Transcriptional responses of the yeast Saccharomyces cerevisiae to Zn availability were investigated at a fixed specific growth rate under limiting and abundant Zn concentrations in chemostat culture. To investigate the context dependency of this transcriptional response and eliminate growth rate-dependent variations in transcription, yeast was grown under several chemostat regimens, resulting ...

متن کامل

Metalloregulation of yeast membrane steroid receptor homologs.

Zinc is an essential micronutrient that can also be toxic. An intricate mechanism exists in yeast that maintains cellular zinc within an optimal range. The centerpiece of this mechanism is the Zap1p protein, a transcription factor that senses zinc deficiency and responds by up-regulating genes involved in zinc metabolism. A microarray screen for novel Zap1p target genes suggested a role in zinc...

متن کامل

Regulation of the PIS1-encoded phosphatidylinositol synthase in Saccharomyces cerevisiae by zinc.

In the yeast Saccharomyces cerevisiae, the mineral zinc is essential for growth and metabolism. Depletion of zinc from the growth medium of wild type cells results in changes in phospholipid metabolism, including an increase in phosphatidylinositol content (Iwanyshyn, W. M., Han, G.-S., and Carman, G. M. (2004) J. Biol. Chem. 279, 21976-21983). We examined the effects of zinc depletion on the r...

متن کامل

Regulation of the Saccharomyces cerevisiae EKI1-encoded ethanolamine kinase by zinc depletion.

Ethanolamine kinase catalyzes the committed step in the synthesis of phosphatidylethanolamine via the CDP-ethanolamine branch of the Kennedy pathway. Regulation of the EKI1-encoded ethanolamine kinase by the essential nutrient zinc was examined in Saccharomyces cerevisiae. The level of ethanolamine kinase activity increased when zinc was depleted from the growth medium. This regulation correlat...

متن کامل

Involvement of the pleiotropic drug resistance response, protein kinase C signaling, and altered zinc homeostasis in resistance of Saccharomyces cerevisiae to diclofenac.

Diclofenac is a widely used analgesic drug that can cause serious adverse drug reactions. We used Saccharomyces cerevisiae as a model eukaryote with which to elucidate the molecular mechanisms of diclofenac toxicity and resistance. Although most yeast cells died during the initial diclofenac treatment, some survived and started growing again. Microarray analysis of the adapted cells identified ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 14  شماره 

صفحات  -

تاریخ انتشار 2000